
Scrollable Lists
    Scrollable list controls must be of type "List or Menu", have solid bodies, and be linked to 
an STR# resource.    The STR# string list can be created and edited with ResEdit, and then 
optionally manipulated directly by a program using utility commands (see "String Lists" in 
utility topics).    The current list "value" (= the selected item(s)) is set or read through data 
linking using SetVal and GetVal.

List Items
    The strings in the linked STR# can be either plain text or references to PICT, ICON, SICN, 
cicn, PAT , PAT#, CURS, acur, or clut resources.    The following string, for example, would 
display the 4th pattern in PAT# 1000 followed by "Ronald":
    PAT#,1000,4,Ronald
Items can be made inactive by preceding the string with a "-" character:
      -PICT,1005,hello
Note how string elements are separated by commas, and that SICN, PAT#, acur, and clut 
types require an index value in addition to the resource ID.

Options
    The following bit values can be added to VarCode to set various list options:
2,4,8,16,32,64,128 = "selFlags" defined by List Manager in Volume 4 of Inside Macintosh:
 2 = lNoNilHilite = do not select empty cells
 4 = lUseSense = clicked cell determines action
 8 = lNoRect = (not used by 1-dimensional lists)
 16 = lNoExtend = do not extend Shift selections
 32 = lNoDisjoint = deselect others on mouse click
 64 = lExtendDrag = allow dragging w/o Shift key
 128 = lOnlyOne = one selection at a time
Adding 128 to the VarCode, for example, creates a single-selection type of list, and setting 
none of the above flags creates a typical multi-selection list.
256 = display list horizontally (default is vertical)
512 = do not show vertical or horizontal scroll bar
1024 = use solid frame rectangle to hilite list items (instead of inverting items)
2048 (requires data linking) = always update list with current contents of linked STR# 
resource when SetVal is called, and update STR# with list contents when GetVal is called
4096 = ignore references to non-text resources in list items and display as text only (do not 
use this with horizontal lists or option 8192)
8192 = show text below non-text resource (instead of to its right (vertical) or not at all 
(horizontal))
16384 (requires option 2048)= create a separate STR#-type handle from a copy of the 
linked STR# resource, and use this handle to transfer strings to and from the list on SetVal 
and GetVal.    The handle to the STR#-like block can be found in cLoData after a call to GetCtl
to get control info.
    Horizontal lists have rectangular cells and work best when displaying non-text items.    
Vertical lists have cells as wide as the list control and as tall as the list's font, and work best 
when displaying text items, or text items preceded by small icons.    If the "text below" 
option is used (8192 in VarCode), then both horizontal and vertical lists have cells that are as
tall or wide as the control, with space for displaying text below the non-text resource.

STR# Link
    BaseCt uses the Macintosh List Manager to create and display scrollable lists.    The 
ListHandle for each list can be found in cHiData (after calling GetCtl) and used with List 
Manager toolbox calls.    WARNING:    We make use of both the "userHandle" and "refCon" 
fields in the ListHandle, so you won't be able to use these to store program-specific info (use
the control's own refCon to store such info, as discussed in "ID/RefCon" in the "Controls" 



topic of the ViewIt guide).
• Fixed Lists
    The strings from the linked STR# are copied into the data handle maintained by the List 
Manager for each list, meaning that later changes to the STR# list will not affect the 
displayed list.    This works well in cases where the list is being used to display a fixed set of 
items.
• Dynamic Lists
    In cases where the contents of the list are not fixed, and the list is data-linked to a 
program variable, then you can use VarCode option 2048 to force the list to "track" the 
current contents of the linked STR# on calls to GetVal and SetVal.    In this case, the utility 
command SetStr is typically used to set new strings in the linked STR#, and then SetVal 
called to update the list in the window.
• Multiple Instances
    A limitation of using the "tracking" option is that multiple instances of the same list control
(as might occur if opening multiple windows based on the same FWND) are linked to the 
same STR#, meaning that this STR# resource can't be used to save list info for more than 
one list control.    A workaround for this limitation is to dynamically allocate an STR#-type 
block for each such list control (using the SetStr command), and then use DupLst, GetVal, & 
SetVal to move strings between this STR#-type block and the list control:
    block <-DupLst-> STR# <-Get/SetVal-> control
Since it would be a burden for the programmer to allocate and manage such a block for each
control, VarCode option 16384 is available to force BaseCt to allocate such an STR#-type 
block automatically, and to use the block (instead of the STR# resource) when responding to
calls to GetVal and SetVal:
    block <- Get/SetVal -> control
The initial contents of the dynamically allocated block will be a copy of the linked STR# 
resource, and the block's handle can be found in cLoData after a call to GetCtl to get control 
info.    This handle can be passed directly to the SetStr and GetStr utility commands to set 
and get the strings in the block associated with each such list control.

Data Linking
    A list control's private "value" is an 8-byte integer that corresponds to the items selected 
in the list.    For single-selection lists (VarCode contains 128), this value is equal to the 
number of the currently selected list item.    For multi-selection lists, the list's value is equal 
to the sum of the bit values corresponding to the selected items in the list.    For example, if 
the first, third, and fifth items are selected in a multi- selection list, then the list's "value" = 1
+ 4 + 16 = 21.    If no items are selected, then the list's value = 0 (for both list types).
    Scrollable lists can be linked to program variables (typically 2, 4 or 8-byte integers - see 
"Data Links" in the ViewIt Guide for more info on data linking).    On GetVal, an integer value 
is returned that indicates which items in the list are selected.    On SetVal, the selected list 
items are updated to reflect the value of the linked program variable.    As described above, 
you can also have the list contents track the linked STR# resource or a dynamically 
allocated STR#-type block on GetVal and SetVal.
    The following code, for example, links a 2-byte integer variable named "myInt" to a single-
selection list control that is the 3rd control in the 2nd view of the window based on FWND 
1005, and then selects the 5th list item:
 FaceIt(nil,GetCtl,1005,0,2,3);
 FaceIt(nil,LnkCtl,ord(cControl), ord(@myInt),2,0);
 ...
 myInt := 5;
 FaceIt(nil,SetVal,1005,0,2,3);

Long Lists
    The internal 8-byte (64-bit) integer used to store a list's "value" will be a problem if a 
multi-selection list has (or can have) more than 64 items.    In this case, the list can be linked



to any contiguous block of memory (instead of a single integer) that will be used to get and 
set selection flags.    This is done by setting the Variable Type of the linked block to 1310 to 
inform BaseCt that it should treat the data address as the address of a block of bits 
corresponding to the selection status of items in the list.
    The linked block of bits must be as large or larger than the number of items in the list, 
otherwise bits beyond the block will get clobbered on GetVal.    The bits in the block should 
be tested, set, and cleared using the toolbox calls BitTst, BitSet, and BitClr, where the bit 
offset will be one less than the number of the list item (i.e., zero-based).
    The following code, for example, links a 100-byte block of bits named "myBlock" to a 
multi-selection list control that is the 3rd control in the 2nd view of the window based on 
FWND 1005, and then selects the 5th and 6th list items.    Using Pascal,
 myBlock : array [1..50] of integer;
 ...
 for i:= 1 to 50 do
    myBlock[i] := 0;
 FaceIt(nil,GetCtl,1005,0,2,3);
 FaceIt(nil,LnkCtl,ord(cControl), ord(@myBlock),1310,0);
 ...
 BitSet(@myBlock,4);
 BitSet(@myBlock,5);
 FaceIt(nil,SetVal,1005,0,2,3);
 ...
Or, using FORTRAN,
 integer*2 myBlock(50)
 ...
 do i = 1,50
    myBlock(i) = 0
 end do
 call FaceIt(0,GetCtl,1005,0,2,3);
 call FaceIt(0,LnkCtl,cControl,
%loc(myBlock),1310,0);
 ...
 call BitSet(myBlock,%val(4));
 call BitSet(myBlock,%val(5));
 call FaceIt(0,SetVal,1005,0,2,3);

Display Tip
    Lists work best if there are no partial cells showing.    To create a list with a whole number 
of cells: 1) first create a list control that is slightly smaller than the desired size, 2) scroll to 
the end of the list, and 3) go back into editing mode and expand the list 1 pixel at a time 
until the last item "jumps" into position.

Limitations
    Although scrollable lists act as single Mac controls, the "GetCtl..." and "SetCtl..." toolbox 
calls do not get or set the list's state since BaseCt makes no use of the control's 
"contrlValue", "contrlMin", or "contrlMax".
    When using GetVal or SetVal with multi-selection lists linked to integers, the maximum 
number of list items that can be affected is 64 since the list uses an 8-byte (64-bit) integer 
to store its "value".    This restriction does not apply to single-selection lists or to the "long 
lists" described above.
    Scrollable lists currently do not support right or center justification of list contents.    Lists 
look best with one-pixel frames and no indent.    No support for hand scrolling.


